
The New
Internationalised Domain Name

System

Gihan V. Dias
LK Domain Registry

APRICOT 2010

What is IDNA?

 A system to allow applications such as
web browsers, mail clients, etc. to handle
non-ASCII domain names

 Stands for Internationalizing Domain Names
in Applications

 Does not make any changes to name
servers or any other DNS infrastructure

 Users type/paste in/click on names in native
characters

 Converted to ASCII and sent to DNS

 Conversion happens in application

Why IDNA?

 Most of the world doesn't use Latin script

 or use extended Latin script with characters
such as ä and ø

 DNS only handles labels with letters (a-z),
numbers (0-9) and hyphen (-)

 Changing DNS not considered feasible

 Support for IDN provided by applications

 e.g. web browsers, IM clients, telephones

How IDNA Works:
Name Resolution

 Name is entered in Unicode

 possibly converted from other encoding to
Unicode

 Name is separated into a sequence of
labels at dots

 Called U-Labels

 If a label has any non-ASCII characters, it
is converted to an A-Label

 using the Punycode algorithm

 gives an ASCII string starting with ―xn--‖

Name Resolution (cont.)

 Sequence of A-Labels is sent to DNS

 DNS resolves name and returns requested
info

 DNS does not ―know‖ if the original name
was ASCII or IDN

 Application getting an A-label will convert
to Unicode (or other encoding) for display
to user

Name Resolution (cont.)

IDNA

libraryIDN-aware

application

local name

server

root name

server

authoritative

name server

name

server

日本語.jp

convert to ACE

using Punycode

map to Unicode

A-Labels

A-Labels

U-Labels

How IDNA Works:
Name Registration

 Registrant provides name to be registered

 may be converted to Unicode

 Name is separated to labels at dots

 Each label is validated

 U-Label

 Each label is converted to ASCII using
Punycode

 A-Label

 Sequence of A-Labels is registered in the
DNS

Use of IDN names

 Users will generally deal with names in their
own language / script

 Either Unicode, or other encodings

 DNS works with A-labels

 not User-Friendly e.g. xn—5zc6byczaxq

 Applications will generally display names in
original script

 users need not deal with funny names

 may occasionally show A-labels

Phishing and other bad
things

 IDNAs may be used for phishing

 Certain letters in one script are similar
(basically identical) to other letters in
another script

 e.g. Latin a, Cyrillic а

 Same problem occurs with Latin

 e.g. PaypaI.com

 Browsers may restrict use of IDNs

Capital I

IDNA2003

 First version of IDNA

 Unicode names and ASCII DNS

 Based on Unicode version 3.2

Operation of IDNA2003

 Split domain name into labels

 Process each label with either

 ToASCII – convert Unicode to ASCII

 ToUnicode – convert ASCII to Unicode

 ToASCII:

 if label is already in ASCII format, do nothing

 Do NAMEPREP processing

 Convert to ASCII using PUNYCODE algorithm

NAMEPREP processing

 Map – map any input characters which
have a mapping

 may be to null (delete character)

 Normalize – Possibly normalize the result
of step 1 using Unicode normalization.

 Prohibit – if any prohibited characters are
present, return an error

 Check bidi – if any right-to-left characters,
string should satisfy ―bidi‖ requirements

Punycode Algorithm

 ASCII characters in the input string are at
the beginning of the output string

 Non-ASCII characters are encoded to
letters (a-z) and digits (0-9) and output
after a hyphen '-'.

 The string is preceded by the ACE prefix
xn--

Examples of Punycode
Encoding

Unicode string ACE string

ascii.com ascii.com

日本語.jp xn--wgv71a119e.jp

தமிழ்.in xn--rlcus7b3d.in

bücher.de xn--bcher-kva.de

ස ිංහලidn.lk xn--idn-u4k9u8ai4i.lk

Issues with IDNA2003

 Limited to Unicode version 3.2

 need to support new and future versions

 applications need not be aware of latest
version of Unicode

 Does not allow the use of joiners and a
few other characters

 Mapping may confuse users who entered
one character and got another

 Allows the use of symbols and other non-
letter/digit characters

 Problems with bidi rules

IDNA2008
(Approved in 2010)

Objectives of IDNA2008

 Allow IDNA to be updated with later
versions of Unicode

 Fix problems with a small number of code
points

 Reduce dependency on mapping

 Fix some details if bidirectional algorithm

Principles of IDNA2008

 Character mapping moved out of IDNA to
a pre-processing step

 case mapping also in pre-processing

 good or bad?

 Permitted characters defined by rules

 mostly by Unicode properties

 short list of exceptions

Principles of IDNA2008

 No NAMEPREP stage

 Input should be a valid U-label

 should be in Unicode normalised form

 should only have valid characters

 Converted to ASCII using Punycode
algorithm

 no change in Punycode

 Compatible with IDNA2003

 except in a few specific cases

Principles of IDNA2008

 Reversible one-to-one mapping between
each U-label and A-label

 either one is an exact representation of a
name

 U-labels displayed to users and used by
IDN-aware applications

 A-labels used by IDN-unaware
applications, including DNS

How IDNA2008 works

 pre-processing

 name resolution

 name registration

Pre-Processing

 IDNA assumes that the characters
submitted to it are in the correct form

 If the original string is not in Unicode, it
must be converted to Unicode

 Mappings may be applied to the string to
make it compatible with IDNA2008

 Mappings are not specified in IDNA2008

 although some guidance is provided in the
mappings document

Suggested Mappings

 Map upper-case characters to lower case

 Map ―full-width‖ and ―half width‖
characters to their decomposition
mapping

 Map all characters using Unicode
Normalization Form C (NFC)

 Map Ideographic Full Stop to Full Stop

 In addition, an application may do
additional mappings based on language
or locale

Vagueness on Mappings

 IDNA2008 is intentionally vague on
mappings

 The idea is that applications should ―do
the right thing‖

 on the other hand, this also creates
opportunities for confusion, as different
applications may behave differently

 Unicode Technical Standard 46 (UTS46)
(also called TR46) attempts to define a
standard mapping (discussed later)

Front End and User
Interface

 Domain names may be

 typed in a URL bar

 read / OCRed from a businesss card

 spoken (voice recognition)

 in a URL embedded in a document

 The O.S. input method converts input to
Unicode

 IDNA preprocessing may further map the
input

 Result should be what the user expects

IDNA Permitted Characters

 IDNA2008 has an inclusion model

 a character is valid only if it meets the rules

 or is included as an exception

 Permitted characters

 Letters and modifiers (in any script) in
Unicode NFC form

 digits

 hyphen-minus

 Non-permitted characters

 punctuation, symbols, pictographs

IDNA Character Categories

 IDNA divides all Unicode characters into
four categories

 PROTOCOL VALID (PVALID)

 The character is generally valid

 may be subject to other rules (e.g. bidi)

 DISALLOWED

 should never appear in a u-label

 problematic chars, symbols, etc.

 no DISALLOWED character will ever be valid

Character Categories (cont.)

 UNASSIGNED

 not assigned in the current version of Unicode

 should not be used at present

 may become PVALID, CONTEXT or
DISALLOWED in a future version of Unicode

 CONTEXTUAL RULE REQUIRED

 two sub-categories

Contextual Restrictions

 CONTEXT-JOINER (CONTEXTJ)
 zero-width joiner (ZWJ)

 zero-width non-joiner (ZWNJ)

 used in Arabic and Indic scripts in a specific
context

 valid in such contexts, invalid otherwise

 CONTEXT-OTHER (CONTEXTO)

 special characters used in specific languages

 Should only be registered in such contexts

Name Resolution

The name resolution process is as follows:

 An IDN name is obtained by the
application

 The name is divided into labels

 Case folding, normalization and any other
mappings are applied

 Each character in each label is considered,
and if it is DISALLOWED or
UNALLOCATED then error

Name Resolution (cont.)

 If any CONTEXTJ chars, then check
context rules

 If any leading combining marks, then
error

 If any Right-to-Left characters, then apply
bidi rules

 If no errors, apply Punycode algorithm

 Lookup resulting A-Label in DNS

Name Registration

The name registration process is similar to
the resolution process, except

 If char. is CONTEXTO, then do contextual
processing

 Check if all chars in each label are in the
appropriate character table

 Do any additional checks required by the
zone

 Each zone should have a character table
and also additional rules if needed

Name Registration (cont.)

 If a label begins with xn--, then assume it
is an A-label and convert it to a U-label

 Else assume it is a U-label and convert to
A-label

 If any errors, exit.

 Else display the U-label and A-label

 IDNA2008 does not recommend any
mappings for registrations, but requires
registrants to submit valid A- or U-labels

differences between
IDNA2003 and IDNA2008

Count IDNA2003 IDNA2008 Comments and Samples

86676 Valid Valid e.g. U+00E0 (à)

3302 Valid Disallowed e.g U+2665 (♥)

4 Mapped /

Ignored

Contextj U+200C (ZWJ)

U+200D (ZWNJ)

U+00DF (ß)

U+03C2 (ς)

4648 Mapped /

Ignored

Disallowed e.g. U+00C0 (À)

431 Disallowed Disallowed e.g. +FF01 (！)

UTS46

 IDNA2008 vague on mappings

 Does not provide guidance for application
developers

 UTS46 (Unicode Technical Standard 46)
proposes a standard mapping

http://www.unicode.org/reports/tr46/

 Maps many characters as in IDNA2003

 Transitionally supports symbols and
punctuation

 Four characters marked as ―deviation‖

Issues with IDNA2008

 Case folding

 only lowercase allowed in DNS

 Phishing possibilities

 Previously allowed chars disallowed

 Localised mappings for each language /
locale

Watch Out:
Registrants and Name owners

 Variants

 different ways of encoding ―same‖ string

 Confusables

 similar looking letters / sequences in different
or same script

 including ZWJ/ZWNJ

 Label invalid or different in either
IDNA2003 or IDNA2008

 applications which only support IDNA2003
will be around for a while

Watch Out:
Users

 Applications not configured for your
script

 may show A-Labels on URL bar

 Phishing attempts

 so what's new?

 How do I type this in?

 Funky language/locale-based mapping

 is that what I entered?

 IDN URLs in documents

 what am I clicking on?

Watch Out:
Registries

 Need to define Language table

 for each zone

 Only register scripts you are familiar with

 Need to define registration policies

 bundling

 identification and activation of variants

 Only register U-labels

 not A-labels

 may do mapping as a service, but get
confirmation of U-label before registration

Watch Out:
Application Developers

 Use consistent mapping

 may be based on UTS46

 if doing localised mappings, make sure both
you and your users understand what you are
doing

 Fully support IDNA2008

 Provide IDNA2003 compatibility mode if
needed

 especially for German and Greek

Conclusion

 IDNA2008 solves problems some
communities had with IDNA2003

 Designed to be ―less confusing‖

 May end up creating more confusion if
applications are inconsistent

 Proper applications localisation needed
for users to benefit

 Lack of uppercase in labels a drawback?

Draft IDNA2008 Documents

Overview Document - IDNA Background, Explanation, and
Rationale

 http://tools.ietf.org/html/draft-ietf-idnabis-rationale

IDNA2008 Definitions

 IDNA Definitions and Document Framework

http://tools.ietf.org/html/draft-ietf-idnabis-defs

 IDNA Protocol

http://tools.ietf.org/html/draft-ietf-idnabis-protocol

 The Unicode code points and IDNA

http://tools.ietf.org/html/draft-ietf-idnabis-tables

 Right-to-left scripts for IDNA

http://tools.ietf.org/html/draft-ietf-idnabis-bidi

Informative document - Mapping Characters in IDNA

http://tools.ietf.org/html/draft-ietf-idnabis-mapping

Gihan Dias
gihan@uom.lk

