Understanding MPLS OAM capabilities to troubleshoot MPLS Networks

Mukhtiar A. Shaikh (<u>mshaikh@cisco.com</u>) Moiz Moizuddin (<u>mmoizudd@cisco.com</u>)

MPLS Overview

- Existing Ping/Trace Capabilities
- LSP Ping/Trace
 - -Theory of Operation
 - -MPLS Echo Packet
 - -Configuration and Troubleshooting Using LSP Ping/Trace
 - •LSP Ping
 - •LSP Trace
 - -AToM VCCV
- Summary

MPLS OAM Overview

 Converged network implies a wide range of applications and OAM needs

IP Based Tools

A flexible set of tools

LSP Ping / Traceroute

- MPLS Overview
- Existing Ping/Trace Capabilities
- LSP Ping/Trace
 - -Theory of Operation
 - -MPLS Echo Packet
 - -Configuration and Troubleshooting Using LSP Ping/Trace
 - •LSP Ping
 - •LSP Trace
 - -AToM VCCV
- Summary

IP Ping/Trace

- PING makes use of the Internet Control Message Protocol (ICMP) protocol
- Ping message of 2 types

type=8: ICMP echo request messages type=0: ICMP echo reply message

- Traceroute makes use of the Internet Control Message Protocol (ICMP) protocol and TTL field on the IP header
- Traceroute is sent in a UDP packet encapsulated on an IP packet
- TTL-field of an IP datagram is decremented by each hop

Traceroute from R1 with Destination R4

R2 Drops the Packet and Sends TTL Expired ICMP Message Back to R1

IP Datagram with Destination R4 and TTL=2, R2 Decrements TTL by 1 and Forwards It to R3 R1 Now Has All the ICMP Error Messages with the Corresponding Source Addresses and Hence Has Got the Complete Route to the Destination

R3 Drops the Packet and Sends TTL Expired ICMP Message Back to R1

IP datagram with Destination R4 and TTL=3, Datagram Reaches R4

R4 Responds with the ICMP Message

Traceroute from R1 to R4 in MPLS Environment

IP Packet's TTL Field Is Copied onto the TTL Field of Label Header

- MPLS Overview
- Existing Ping/Trace Capabilities
- LSP Ping/Trace
 - -Theory of Operation
 - -MPLS Echo Packet
 - -Configuration and Troubleshooting Using LSP Ping/Trace
 - •LSP Ping
 - •LSP Trace
 - -AToM VCCV
- Summary

- LSP Ping/Trace, like the traditional IP Ping, is based on echo request and echo reply
- LSP Ping/Trace doesn't use an ICMP packet
- Relies on IPv4(or IPv6) UDP packets with port 3503
- UDP packets received with port 3503 are either an MPLS echo or an MPLS echo-reply

Theory of Operation

- We use the same label stack as used by the LSP and this makes the echo to be switched inband of LSP
- The IP header destination address field of the echo request is a 127/8 address
- An Echo reply, which may or not be labelled, has outgoing interface IP address as the source; destination IP address/port are copied from the echo-request's source address/port

Theory of Operation (Cont.)

- Various reasons for LSP to break
 - **Broken LDP adjacency**
 - **MPLS** not enabled
 - **Mismatch labels**
 - Software/hardware corruption
- Regular IP ping will be successful

Theory of Operation (Cont.)

- Presence of the 127/8 address in the IP header destination address field causes the packet to be consumed by any routers trying to forward the packet using the ip header
- In this case R2 would not forward the echo-req to R1 but rather consumes the packet and sends a reply to R3 accordingly

- MPLS Overview
- Existing Ping/Trace Capabilities
- LSP Ping/Trace

-Theory of Operation

-MPLS Echo Packet

-Configuration and Troubleshooting Using LSP Ping/Trace

•LSP Ping

•LSP Trace

-AToM VCCV

• Summary

Packet Format of an MPLS LSP Echo

MPLS LSP Echo Request and Replies Are UDP Packets with Header and TLVs

Packet Format of an MPLS LSP Echo (Cont.)

			IP/MPLS Header			
Value	Meaning		Version Number Must Be Zero		e Zero	
			Message Type	Reply Mode	Return Code	Rtrn Subcode
1	MPLS Echo			Sender's	Handle	
	Request			Sequenc	ce Number	
2	MPLS Echo Reply		Tir	nestamp Sent	(NTP Seconds	3)
			Timest	amp Sent (NTI	P Fraction of u	secs)
			Timestamp Received (NTP Seconds)			
			Timestam	np Received (N	ITP Fraction o	f usecs)
				TL	Vs	

Version Number: It's Set to One

Message Type: Message Type Field Tells Whether the Packet Is an MPLS Echo Request or MPLS Echo Reply

Packet Format of an MPLS LSP Echo (Cont.)

		IP/MPL	S Header		
Value	Value Meaning	Version Number	Must Be Zero		
		Reply Mode	Return Code Rtrn Subcode		
1	Do Not Reply	Sender's Handle Sequence Number			
	Керіу				
2	Reply via an IPv4	Timestamp Sent (NTP Seconds)			
UDP Packet		Timestamp Sent (NTP Fraction of usecs)			
	Reply via an IPv4	Timestamp Receiv	ved (NTP Seconds)		
3	UDP packet with	Timestamp Received (Timestamp Received (NTP Fraction of usecs)		
	Router Alert	TI	_Vs		

Reply Mode: The Reply Mode Is Used to Control How the Target Router Replies to MPLS Echo Request

Return Code

IP/MPLS Header			
Version	Number	Must Be	Zor
Message Type	Message Type Reply Mode		
Sender's Handle			
Sequence Number			
Timestamp Sent (NTP Seconds)			
Timestamp Sent (NTP Fraction of usecs)			
Timestamp Received (NTP Seconds)			
Timestamp Received (NTP Fraction of usecs)			
TLVs			

- The router initiating the LSP ping/trace would set the return code to zero
- The replying router would set it accordingly based on the table shown

Value	Meaning
0	The Error Code Is Contained in the Error Code TLV
1	Malformed Echo Request Received
2	One Or More of the TLVs Was Not Understood
3	Replying Router Is an Egress for the FEC
4	Replying Router Has No Mapping for the FEC
5	Replying Router Is Not One of the "Downstream Routers"
6	Replying Router Is One of the "Downstream Routers", and Its Mapping for this FEC on the Received Interface Is the Given Label

Target FEC Stack TLV

Value	Meaning
1	Target FEC Stack
2	Downstream Mapping
3	Pad
4	Error Code
5	Vendor Enterprise Code

Sub Type	Length	ValueField
1	5	LDP IPv4 Prefix
2	17	LDP IPv6 Prefix
3	20	RSVP IPv4 Session Query
4	56	RSVP IPv6 Session Query
5		Reserved
6	13	VPN IPv4 Prefix
7	25	VPN IPv6 prefix
9	10	L2 Circuit ID

Sub-TLVs

• LDP IPv4 Prefix Sub-tlv

0	7 3	8 15	16	
	0x00	001	Length = 5	
		lpv4	Prefix	31
	Prefix Length			

• RSVP IPv4 Prefix Sub-tlv

0	15	16	31
	0x0003	Length = 20	
	IPv4 Tunnel Endpoin	t Address	
	Must Be Zero	Tunnel ID	
	Extended Tunnel ID		
	IPv4 Tunnel Sen	der Address	
	Must Be Zero	LSP ID	

L2 Circuit Type (Sub-TLV)

L2 Circuit Type Sub-tlv

0x00	09	Length = 16
	Remote PE Address	
	Source PE Address	
PWID Type	PWID Length=4	PWID

L3VPN (VPN IPv4 prefix) Sub-tlv

Downstream Mapping TLV

R1

	Value	Meaning			
	1	Target FEC Stack			
	2	Downstream Mapping			
	3	Pad			
	4	Error Code			
	5	Vendor Enterprise Code			
E0/0 1	0.200.12.	1 R2	10	.200.23.3 E1/1	R3

Label 50 10.200.12.2 E0/1	E1/0 10.200.23.2
10.200.0.1 10.20	0.0.2 10.200.0.3
R1's Downstream Mapping for 10.200.0.3 Common_Header MTU: Mtu of E0/0 Address Type 1 Downstream Intf Addr 10.200.12.1 Downstream Label 50	R2's Downstream Mapping for 10.200.0.3 Common_Header MTU: Mtu of E1/0 Address Type 1 Downstream Intf Addr 10.200.23.2

- MPLS Overview
- Existing Ping/Trace Capabilities
- LSP Ping/Trace
 - -Theory of Operation
 - -MPLS Echo Packet
 - -Configuration and Troubleshooting Using LSP Ping/Trace

•LSP Ping

- •LSP Trace
- -AToM VCCV
- Summary

Troubleshooting Using LSP Ping (IPv4) MPLS Disabled at the P Router (R1)

MPLS Disabled on R1

• If a Regular Ping Is Done from R3 to R4, It Would Be Successful But an LSP Ping Would Fail

R3#ping 10.200.0.4

!!!!!

Success rate is **100 percent (5/5)**, round-trip min/avg/max = 24/28/32 ms

R3#ping mpls ip 10.200.0.4/32

Sending 5, 100-byte MPLS Echos to 10.200.0.4/32, timeout is 2 seconds, send interval is 0 msec:

- Codes: '!' success, 'Q' request not transmitted,
 - '.' timeout, 'U' unreachable,
 - 'R' downstream router but not target

Type escape sequence to abort. UUUUU Success rate is 0 percent (0/5)

The Response Would Come from R1

R3#ping mpls ipv4 10.200.0.4/32 verbose Sending 5, 100-byte MPLS Echos to 10.200.0.4/32, timeout is 2 seconds, send interval is 0 msec:

Codes: '!' - success, 'Q' - request not transmitted, '.' - timeout, 'U' - unreachable,

'R' - downstream router but not target

Type escape sequence to abort.

- U 10.200.21.1, return code 4

Success rate is 0 percent (0/5)

Troubleshooting Using LSP Ping (IPv4) (Using Router Alert)

Troubleshooting Using LSP Ping (RSVP IPv4)

- MPLS Overview
- Existing Ping/Trace Capabilities
- LSP Ping/Trace
 - -Theory of Operation
 - -MPLS Echo Packet
 - -Configuration and Troubleshooting Using LSP Ping/Trace
 - •LSP Ping

•LSP Trace

- -AToM VCCV
- Summary

LSP Trace: Path/Tree Trace (Cont.)

Trace Can Be Divided into Two Types

- Path trace would give us information of only one path out of all the possible ECMP paths
- In the above example if I do a path trace from R1 to R6; I might only be reported about R1-R2-R3-R4-R5-R6
- Tree trace returns ALL of the possible paths between one source and destination
- So in the above case the LSP (tree) trace would give us information about both the paths R1-R2-R3-R4-R5-R6 and R1-R2-R7-R8-R5-R6

Troubleshooting Using LSP Trace (IPv4)

- There is an intermittent response for the data traffic using the LSP R3-R4-R1-R2
- Sweeping LSP ping tells us that packets over 1500 are failing

Output with regular trace	But if an LSP trace is done, output looks as follows
R3#tracer 10.200.0.2	R3#tracer mpls ip 10.200.0.2/32 Tracing MPLS Label Switched Path to 10.200.0.2/32, timeout is 2 seconds
Type escape sequence to abort.	
Tracing the route to 10.200.0.2	Codes: '!' - success, 'Q' - request not transmitted, '.' - timeout, 'U' - unreachable,
1 10.200.34.4 [MPLS: Label 44 Exp 0] 0 msec 0 msec 0 msec	'R' - downstream router but not target
2 10.200.14.1 [MPLS: Label 22 Exp 0] 0 msec 0	Type escape sequence to abort.
msec 0 msec	0 10.200.34.3 MRU 4470 [Labels: 44 Exp: 0]
3 10.200.12.2 0 msec * 0 msec	R 1 10.200.14.4 MRU 1500 [Labels: 22 Exp: 0] 4 ms
R3#	R 2 10.200.12.1 MRU 4474 [implicit-null] 15 ms
	! 3 10.200.12.2 20 ms

Troubleshooting Using LSP Trace (RSVP IPv4)

When We Do LSP Trace R5 Would Not Be Able to Match the 5 Tuples and Would Reply with a Return Code of 4 LSP Ping from R1 Would Work as All the Five Values in the LSP Ping Would Be Correct

R1#trace mpls traffic-eng tunnel tunnel1

Loadbalancing

R3#sh mpls forwarding-table 10.2	200.0.1
Local Outgoing Prefix B	ytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id s	switched interface
27 20 10.200.0.1/32	0 PO0/0 point2point
23 10.200.0.1/32	0 PO1/0 point2point
R3#	
R3#trace mpls ip 10.200.0.1/32 destination	R3#trace mpls ip 10.200.0.1/32 destination
127.0.0.1	127.0.0.3
Tracing MPLS Label Switched Path to	Tracing MPLS Label Switched Path to
10.200.0.1/32, timeout is 2 seconds	10.200.0.1/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not	Codes: '!' - success, 'Q' - request not
transmitted,	transmitted,
'.' - timeout, 'U' - unreachable,	'.' - timeout, 'U' - unreachable,
'R' - downstream router but not target	'R' - downstream router but not target
Type escape sequence to abort.	Type escape sequence to abort.
0 10.200.123.3 MRU 4470 [Labels: 20 Exp: 0]	0 10.200.134.3 MRU 4470 [Labels: 23 Exp: 0]
R 1 10.200.12.2 MRU 1504 [implicit-null] 12 ms	R 1 10.200.14.4 MRU 1504 [implicit-null] 14 ms
! 2 10.200.12.1 3 ms	! 2 10.200.14.1 5 ms

- MPLS Overview
- Existing Ping/Trace Capabilities
- LSP Ping/Trace
 - -Theory of Operation
 - -MPLS Echo Packet
 - -Configuration and Troubleshooting Using LSP Ping/Trace
 - •LSP Ping
 - •LSP Trace

-AToM VCCV

• Summary

VCCV Switching Types

Two Types of Switching Modes

 Type 1 involves defining the upper nibble of the control word as a Protocol Id (PID) field

VCCV Switching Types (Cont.)

 Type 2 involves shimming a MPLS router alert label between the IGP label stack and VC label

Troubleshooting Using LSP Ping (L2 CKT)

Pinging from R3 to R1 through AToM Tunnel R3#ping mpls pseudowire 10.200.0.1 10

R3#ping mpls pseudowire <IPv4 peer IP addr > <VC ID>? destination Destination address or address range

- exp EXP bits in mpls header interval Send interval between requests in Routerc
- pad Pad TLV pattern
- Repeat count repeat
- **Reply mode** reply
- size Packet size
- Source specified as an IP address source
- Sweep range of sizes sweep
- **Timeout in seconds** timeout

ttl Time to live

verbose mode for ping output verbose

Return code 4 sent due to some error condition either of the following has occurred

Wrong VC ID Wrong VC Type Wrong Source Address

R1#

*Jan 19 19:32:17.726: LSPV: AToM echo request rx packet handler

*Jan 19 19:32:17.726: LSPV: Echo packet received: src 10.200.0.3, dst 127.0.0.1, size 122

*Jan 19 19:32:17.734: LSPV: Echo Hdr decode: version 1, msg type 1, reply mode 2, return code 0, return subcode 0, sender handle 850000D1, sequence number 1, ti mestamp sent 20:22:30 UTC Mon Jan 19 2004, timestamp rcvd 00:00:00 UTC Mon Jan 1 1900

*Jan 19 19:32:17.734: LSPV: tlvtype 1, tlvlength 20

*Jan 19 19:32:17.734: LSPV: AToM FEC decode: srcaddr 10.200.0.1, destaddr 10.200 .0.3, vcid 10, vctype 5

*Jan 19 19:32:17.734: LSPV: Target FEC stack length = 20, retcode = 3

*Jan 19 19:32:17.734: LSPV: tlvtype 3, tlvlength 8

*Jan 19 19:32:17.734: LSPV: Pad TLV decode: type 1, size 8

*Jan 19 19:32:17.734: LSPV: Echo Hdr encode: version 1, msg type 2, reply mode 2, return code 4, return subcode 0, sender handle 850000D1, sequence number 1, ti mestamp sent 20:22:30 UTC Mon Jan 19 2004, timestamp rcvd 19:32:17 UTC Mon Jan 1 9 2004

- MPLS Overview
- Existing Ping/Trace Capabilities
- LSP Ping/Trace
 - -Theory of Operation
 - -MPLS Echo Packet
 - -Configuration and Troubleshooting Using LSP Ping/Trace
 - •LSP Ping
 - •LSP Trace
 - -AToM VCCV
- Summary

- Traditional ping/trace not able to detect the problems in the MPLS networks.
- LSP ping/trace brings a new set of tools to troubleshoot MPLS forwarding plane problems
- VCCV adds new capability to help troubleshoot layer2 VPN issues

THANK YOU