DNSSEC Impact on Registries

Edward Lewis, Neustar Jakob Schlyter, .SE

Agenda

- What is a Registry, how is it run?
- Steps Towards Internal DNSSEC
- Steps Towards External DNSSEC
- Tough Issues

Registries & DNSSEC

- Why cover this topic?
- DNSSEC needs a hierarchy of public keys
 - Root covers TLD
 - TLD covers next level, ...
 - downward to data
- Registries enable building the hierarchy

DNS tree and DNSSEC

What is a Registry?

Registries come in many forms:

- Name Registry, e.g., .edu, .jp, .kr, .cn, .tw
- Number Registry, e.g., APNIC
- Routing Registry, e.g., RADB
- Non-Internet Registries too
- We will stay with name registries and number registries ("Internet registries")

Others Involved

- Registrant = Whoever gets the name or address space
- DNS Operator = Whoever runs the DNS for the Registrant (sometimes the same)
- Registrar = A "retailer" for some Registries

Registry Environment

- The job of a registry is to relate resource (domain) to a user (registrant)
- Registries get requests
 - Directly from Registrants (and/or)
 - Indirectly via Registrars
- Registries supply publication services
 - Whols, IRIS, DNS, sometimes routing

Registry Context

Components of a Registry

- Registration Service
- Information Service
- DNS Service
- The "unseen" Database
 - "heart" of a registry

Registry Internals

Registration Interface

- Getting Data Into a Registry
- The "Front Office"
- Important to DNSSEC
 - This is how DNSSEC data will enter

Registry Functions

- Registries have business rules
 - Billing for actions
 - Is there money in an account?
 - Checks on registered data
 - Is the registration authentic? Authorized?
 - Are there 2-13 name servers?
 - Is the requested name appropriate?

Registration Database

- Tracks all data registered
 - Besides names, there is billing information, contact information, DNS servers, and more
 - Will need to store DNSSEC data too

Information Service

- Whols (now), IRIS coming/may come
- Displays information about a registration
 - Gives the contact for a domain name
 - Gives the contact for an IP address
- Might display DNSSEC data

Domain Name Service

- For a "name registry" this is the most vital operational service
- Usually hidden master, publicly accessible slave servers
- DNSSEC will add new record types
 - DNSKEY, RRSIG, NSEC, and DS

Modes of Operation

- Direct or Indirect Relationships
 - Registrars?
- Registration Style and Protocol
 - Interactive or batch?
- DNS Update Frequency
 - Immediate or, say, daily updates?

Environment

- Registries may interact with the public directly (for registrations)
- Some registries follow a "shared registry model"
 - Registrars provide interface
- RIRs and NIRs are a mixture of both

Direct Interface

- A registrant ("buyer of a name") will contact the registry
- This is an "open to all" arrangement
- This is the original style of Internet registries
- Impact to DNSSEC
 - Direct contact between registry and registrant

Registrars

- "Retailers" of domain names
- Registrars will handle DNSSEC data
 - Need to add DNSSEC to registration requests
 - Will increase number of requests
- Registrars may bundle services, including DNS operations

Registration Interface

- How is it transferred?
- What is "it"?
 - DNSKEY appears in Registrant's zone
 - DS appears in Registry
 - What gets passed?

DNSKEY vs DS

- A DS RR is made from a DNSKEY
 - DS RR holds a hash of the DNSKEY
- Who performs the hash function?
 - Registrant/Registrar?
 - Registry?
- This is a significant design choice
 - Will address this on EPP slide

Asynchronous (Email)

- Some registries use formal template messages sent via SMTP
- Work flow is managed in mail folders
- Interface is "store and forward" not interactive
- This kind of interface is hindered by spam volume

Client-Server

- These interfaces consist of client software to send messages to a server
- Registries using this need to distribute software to registrants or registrars (more common)
- Security arrangements are usually predetermined (certificates)

RRP, others

- Registry-Registrar Protocol
- Developed by Verisign
- Used in .com and .net
- Led to the development of the IETF standard EPP
- Other protocols are in use, not as widespread (e.g., Payload 2.0 SRS)

Web-based

- Like mail, sometimes layered on mail
- Because web clients are anonymous these make use of certificates for identification and authentication
- This makes them behave less like mail interfaces and more like client-server
 - There is a prearranged agreement in place

EPP

- Extensible Provisioning Protocol
- IETF Proposed Standard, documented in 2004
 - RFC numbers 3730 thru 3735
- XML based, runs over TLS
- Written in context of a shared registry model (registrars)

EPP and **DNSSEC**

- EPP is extensible
- IETF draft document for inclusion of DNSSEC
 - draft-hollenbeck-epp-secdns-06.txt
 - http://www.ietf.org/internet-drafts/
 - "-06" will increment from time to time
- Tests are being conducted with this definition

EPP on "DNSKEY vs DS"

- EPP is leaning towards the transmission of the DS as the primary means of registering DNSSEC data
- The rationale is
 - Simplifies the registry, core functions
- DNSKEY is an optional feature of DS
 - In case a registry wants to collect it

EPP-SECDNS Field Test

- A short-term trial conducted in November 2004
- Registrar-Registry
 - Alice's Registry <-> NeuStar
 - dnssectrial.us was the test zone
- Worked, comments supplied were fed into the current draft

Frequency of DNS Updates

- DNSSEC is defined to allow the signing process to be off-line
- This was done when updates were done once or twice a day
 - Time enough to transfer files over "air-gap"
- Modern registries update DNS in minutes of a name's registration

Batch Updates

- If a zone is updated only a few times a day
 - "Dump" the zone file from the database
 - Sign the zone file, off-line
 - Push the zone file to DNS servers
- The major decision is whether the whole zone is signed or are signatures "recycled"

Off-line, batch signing

Incremental Updates

- Quickly-refreshed, large zones need to make use of incremental updates
 - If one name is added to a million name zone, you'd rather ship the new name around, not the million + one names
- DNS has two incremental updates
 - Dynamic Update
 - Incremental Zone Transfer

Dynamic Signing

Steps Towards DNSSEC

- Internal Deployment
 - Setting up key management procedures
 - Signing the zone like a registrant would
- Opening for Registration
 - Accept DS or DNSKEY records
 - Sign those into the zone
 - A new "service"

Signing the Registry Zone File

Steps

- Key Management plan
- Signing the zone
- "Recycling" signatures and incremental signing
- Securely transferring the zone from master servers to slave servers

Key Management

- Public key cryptography works on keypairs
 - Private key, held secret and signs data
 - Public key, distributed and verifies data
- Private keys need to be protected and "the wear out"
- Public keys need to be published

Private Keys

- Protection is important
 - Anything verified by the public key is tied back to this key
- Lifetime
 - The more often a key is used, the easier someone can "guess" it
 - A guessed (or exposed/stolen) key is "worse than worthless"

Public keys

- Needs to be available to all who verify signatures
- Widespread distribution
 - Where ever it is needed, on-demand
- Reliable distribution
 - Make it harder for "false" public keys

ZSK and KSK

- Operational tests have lead to ZSK and KSK names for keys
- ZSK = Zone Signing Keys
 - Often used, discarded frequently
- KSK = Key Signing Keys
 - Rarely used, passed up to parent
- KSK's are what DS records point to

Zone Signing

- Starts with key management plan and a zone signer
- Need to distribute signed zone securely
- Other considerations
 - Use of dynamic update
 - Incremental zone updates

Zone Signer Application

- Functions
 - Sign RRSets
 - Cryptographic operations
 - Add NSEC (authenticated denial) records
 - Include DS RRSets for registrants

Hardware Assist for Signing

- Protects private key
 - Key memory isn't accessible
- Speeds processing
 - Processor built for cryptography

Recycling Signatures

- Reuse of previous signatures
 - E.g., sign daily, with weekly expiration
- To do this, the output of the signer has to be fed back to the database, or otherwise used as input for the next signing operation

Zone Transfer Security

- Plain zone transfers are not secure
- Management VPN
 - Firewall or VPN client/server encrypts all traffic
- TSIG
 - DNS protocol (application level) protection

Opening Service to Registrants

- Chief service is signing delegation information
- For large zones, incremental signing is needed
- Dynamic update and incremental zone transfers are needed too

Signing Delegation Information

- Currently a registry has an NS RRSet for a domain name or names for networks
- Delegations will now feature a DS RRSet
 - Registry is authoritative source (unlike for the NS RRSet)

Incrementally Signing a Zone

- Completely signing a large zone will take a long time
 - One or two signatures per name
- Sign only what is new, what has expired
 - Means retaining old(er) signatures

Signing Dynamic Updates

- Dynamic Update can be used to push changes into DNS
 - Ought to be done securely
- Private key is needed on the "true" master server
 - Protection is an issue, workload
- Also need incremental zone update

DNSSEC Data Flows

- Registration
- Database
- Information Services
- DNS
- DNS Monitoring

Registration of DNSSEC Information

- Registration today -
 - Name, Contact Information, Name Servers
- DNSSEC
 - DS or DNSKEY
 - Could also include "data lifetime"

DNSSEC in the Database

- For name registries
 - DS or DNSKEY for each registration
 - May be multiple keys
- For number registries
 - DS or DNSKEY set for each reverse-map zone, not just each network

DNSSEC in Information Services

- Optional to DNSSEC
- Useful for debugging and checking registered data
- Could show any DNSKEY records collected, with just DS in zone
- Also could show any "time based" data

DNSSEC in DNS Zone File

- DNSSEC will add
 - RRSIG for top of zone RRSets (SOA, etc)
 - NSEC and RRSIG for all names in zone
 - DS and RRSIG for all names with DNSSEC in zone
- Zone file gets bigger
- Bandwidth needed gets bigger

DNSSEC "Health" Checks

- Some registries automate cleaning the DNS, e.g., lame delegation checking
- What is needed for DNSSEC?
 - Verify that each DS RR refers to an available DNSKEY, with correct hash
 - Verify that all DNSKEYs that are supposed to have DS records do so
- "Fixes" ought not be automatic

Protection of DNSSEC Flows

- Assuming Internal Security
 - Integrity of the internal components of a registry is important, but assumed here
- Securing Input
 - Is registration authentic and authorized?
- Securing Output
 - Is published data protected?

Securing the Registration Interface

- Authentication
 - Verify that the registration request is from the entity that is named in the request
 - Is the registrant really the registrant?
- Authorization
 - Is the registration request to be allowed?

Securing the DNS Zone File

- Database to Hidden master
 - Done on a protected network
 - Incremental updates can be protected with Secure Dynamic Update
- Hidden master to slave servers
 - VPN, encrypted tunnels
 - TSIG protection of AXFR and IXFR

Performance Burden of DNSSEC

- Data Held and Produced
 - This will impact the interface to registrants and registrars
 - Also internal data capacity
- Data Transferred
 - This will impact the data published by a registry to the general Internet

Demand on a Registry

- Sources of demand
 - Registration requests
 - DNSSEC key refreshes will raise this
 - Amount of data held
 - DS records will add to this, DNSKEYs ever more so
 - Internet traffic
 - Internet activity is not related to registrations

Volume of Data Held in Database

- Per object transactions increase as keys are refreshed
 - Change more than name servers
- Data stored also increases
 - Maybe 100's-1000's of bytes per object
 - But multiply that times number of objects
- More data to backup, transfer, etc.

Volume of Data Held in Zone File

- Zone files grow considerably
- Incremental updating is needed
- Memory use by (some) name servers is a limitation

Bandwidth Impacts

- DNSSEC messages are larger than DNS messages
 - Must use EDNS0
- Also more frequent if verification data is needed

Tough Issues for Registries

- Non-technical considerations
- Deploy? When?
- Making it payoff

Balance Stability & Innovation

- Registries play key role in Internet
 - Rocking the boat has large ripple effects
 - For operations "as expected" is better than "an adventure"
- But innovations in Internet need improvements at registries
 - Internet is not "done"
 - Needs security, other features

Need for Stability

- Stability is important
 - With a solid foundation, other components can innovate
 - Protocols are sensitive to changes in timing - TCP congestion management
- Cost efficiency is also important
 - Limits testing though

Need to Innovate

- DNSSEC is one innovation
 - Supplements overall security
 - Payoff if the top of the tree is signed, i.e.,
 the root, TLDs, second level domains
- Other innovations
 - IPSEC, Internationalized (non-ASCII)
 Domain Names

What to do?

- Registries need to participate in workshops, test environments
 - Not alone and not just other registries, but in collaboration with community
- Registries need to carefully manage innovation
 - It is just a hard job

DNSSEC Payoff

- Chicken-and-Egg problem
- Enabling Registration

Chicken-and-Egg

- Which came first, chicken or the egg?
- Which comes first, a DNSSEC registry or a DNSSEC application?
- DNSSEC applications are in the works
 - IPSEC Key and SSH Keys
 - But no substantial payoff until there are DNSSEC registries

Enabling Registrants

- The reason for registries to pursue DNSSEC now
 - Shapes the protocol for operational efficiency
 - Enables registrants to make use of DNSSEC applications
 - Fosters development of other applications
- Balanced against stability, of course

Conclusion

- Status of the DNSSEC Specification
- Testing Plans
- EPP work

DNSSEC Document Status

- In RFC Editor Queue as of Feb 4:
 - http://www.ietf.org/internet-drafts/
 - draft-ietf-dnsext-dnssec-intro-13.txt
 - draft-ietf-dnsext-dnssec-records-11.txt
 - draft-ietf-dnsext-dnssec-protocol-09.txt
- Waiting for Proposed Standard publication

DNSSEC Resources

- http://dnssec.net/
 - Links to many resources, deployment plans
- http://dnssec-deployment.org/
 - New website, group pushing for DNSSEC adoption

Presenters

- Edward Lewis
 - ed.lewis @ neustar.biz
- Jakob Schlyter
 - jakob @ rfc.se

Questions?

We are open for discussion…