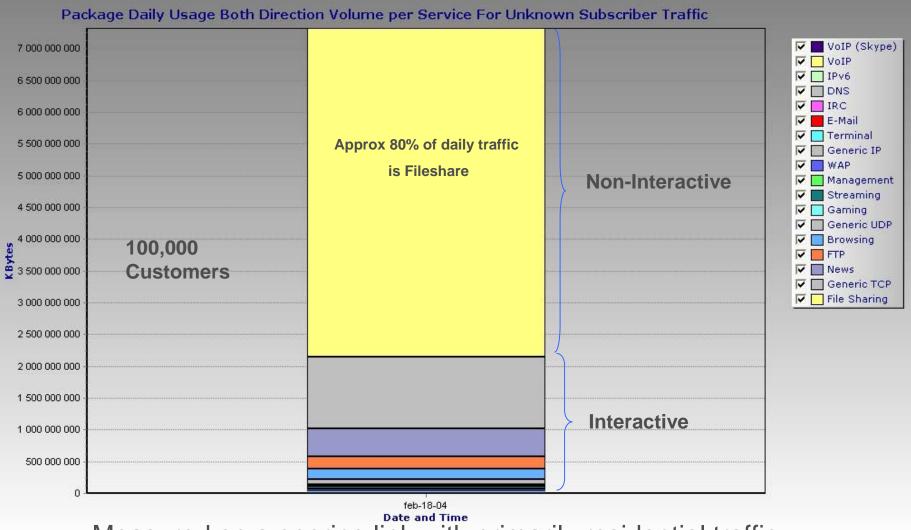


P2P Optimized Traffic Control

Riad Hartani & Joe Neil Caspian Networks

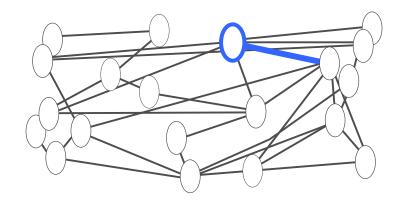
P2P Applications

napster

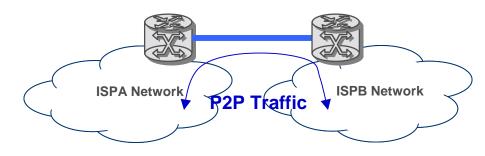

gnutella.com

Rapid evolution of P2P applications, significant impact on network architectures and economics

Daily Traffic Volumes By Traffic Type

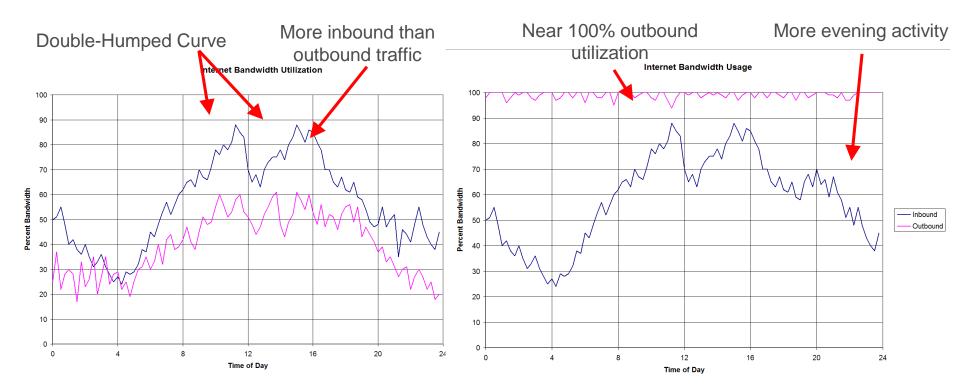


Measured on a peering link with primarily residential traffic

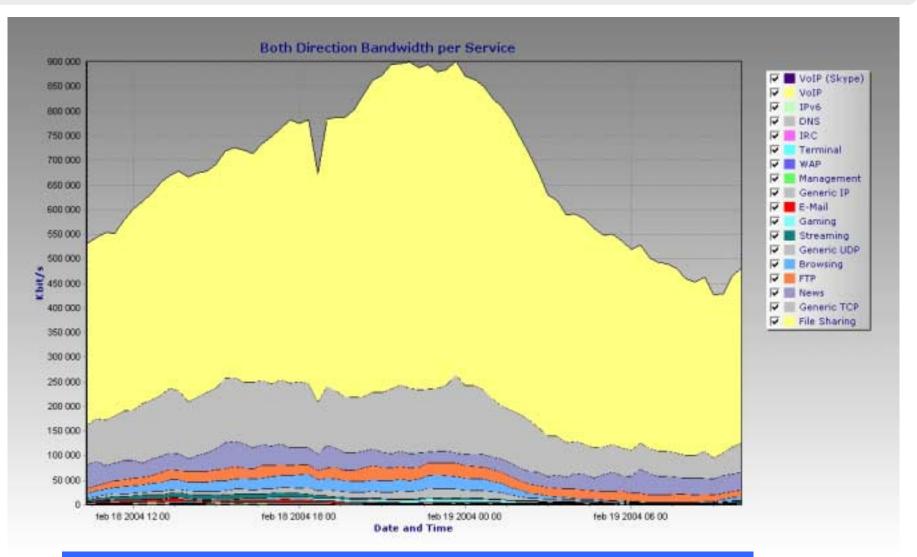

P2P Problem: where it surfaces

1. Congested Link in Core or Access Network – Hot Spot

- 2. Congestion at Peering Interface
 - >90% P2P traffic goes off-net


3. Congestion at undersea links (expensive and cannot throw b/w at the problem)

P2P Changing Network Engineering Paradigm



 $H \rightarrow 7$

P2P results in almost continuous, almost synchronous traffic loads ...

Changes network design and provisioning assumptions

Impact of P2P Traffic

Measured on a peering link with primarily residential traffic 78% Known File Sharing Traffic

P2P: Current Solutions

» Approach

- Protect against P2P applications masquerading as http traffic (port 80)
- Deal with higher layer (application) inspection and classification
- Typically targeted for network edges / onramps partly because these functions are available on lower speed interfaces only due to performance requirements of these solutions

» Challenges:

- Encryption making it impossible to identify application type
- Performance current offerings are "flow-based" but operate at lower speed interfaces
- Complexity (rules change daily with application changes).
 Operationally challenging.
- Not efficient under class congestion random discard mechanisms only
- Extra box(s) in network

Managing P2P Use – different approaches

- » Ignore the problem
- » Management by written or other policy
- » Throw Bandwidth at it
 - More b/w you give, more it takes!!!
- » P2P Traffic Control
 - Port Blocking
 - Rate limiting
 - Bandwidth quotas
 - QoS

1. Identify P2P Traffic

2. Manage P2P Traffic

The Issue

Unknown Traffic

- Browsing
- Streaming
- Voice/Video over IP
- Some P2P (skype, small transfers, etc.)
- Small web downloads
- Large FTP Transfers
- Some P2P (large transfers)

All Traffic Treated Equally Under Congestion

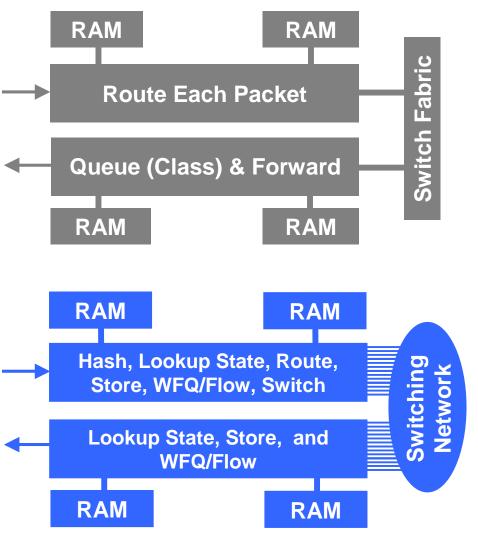
Poor QoE for Interactive Applications

Currently too costly to maintain adequate QoE

Conventional routers cannot identify / classify P2P traffic.

Appliance approach using signatures has operational, accuracy and cost issues

Flow-based Routing: The Technology


Conventional Router

- 1. Route each packet
- 2. Switch to output
- 3. Class-based QoS

Flow-based Router

1. Hash for flow identification

- 2M flows/s and 6M flows per 10 Gig
- Flexible definition of flows: IP flows, PWoMPLS flows, IPoMPLS flows
- 2. Create "soft" state or look up
 - Route, switch, filters, stats
- 3. Per-flow QoS behavior
 - Leverage flow state for advanced QoS
 - Shape, police, CAC, congestion control

Flow Routing: QoS and Network Benefits

- » Customized congestion control schemes
- » Flexible connection admission control (CAC)
- » Advanced shaping/policing schemes
- » Guaranteeing services → network scalability
- » Next evolutionary steps towards routers with integrated traffic control capabilities

State \rightarrow Intelligence \rightarrow Improved nodal behavior \rightarrow Enhanced network services at lower cost

Customized Congestion Control Schemes

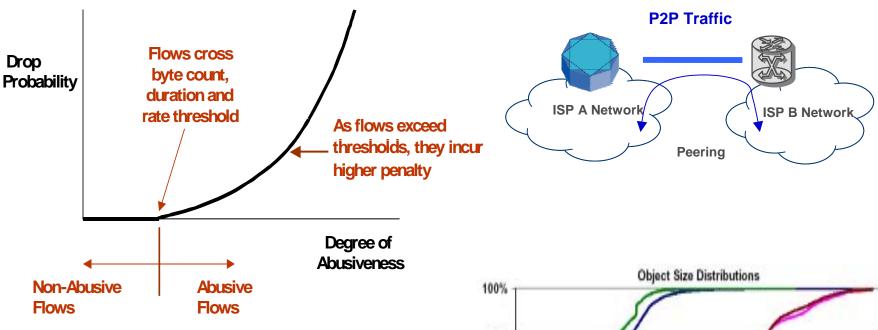
- Providers can select & enforce explicit congestion control policies (responsive vs. unresponsive, high rate vs. low rate, short lived vs. long lived)
- Flow routers leverage state information to characterize traffic flows
 - Can enforce specified congestion control policies
- Providers can decide on different congestion based their requirements

Examples

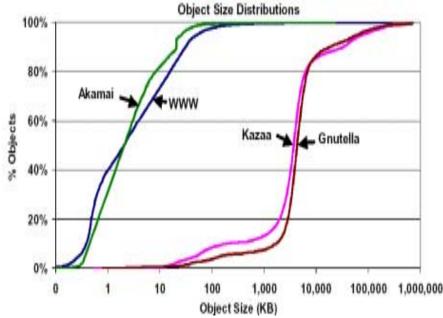
- Guarantee (weighted) fairness between TCP flows
- Congestion control based on "flow abusiveness concept"
- Ensure quasi zero-loss for certain types of traffic (e.g. TDM, emulated circuit)

Flow-based congestion control schemes allow

- Differentiation between service providers
- Definition of new services


Identifying P2P flows

Service	Duration	Average Rate	Bytecount
HTTP	Short	High	Low to High
VPN	Long	Low	High
Games	Long	Low	High
Streaming	Long	Medium	High
Telnet	Long	Low	Medium
Fileshare / P2P	Long	Medium- High	High


Anomaly based detection approach of P2P flows Based on an exhaustive characterization of P2P traffic

Managing P2P Traffic

- Multiple dimensions used to identify P2P traffic
 - Traffic rates, flow lengths, packet sizes
 - Flows per user & traffic per flow
- Provides customized control behavior under congestion
- Leads to optimized ROI for costly peering links

Conclusions

- » P2P traffic to grow, changing network and traffic engineering assumptions
- » Flow-based routing enhances IP routers nodal behavior, based on a dynamic identification and policy based action schemes
- » Flow based routing allows optimized resources management, significantly improve service providers economics
- » P2P applications and impact on services and network architectures: threats and opportunities !

