

UHF band(860-960MHz) RFID development in Japan

Jin Mitsugi Auto-ID Labs. Japan Keio University

Agenda

- Features of UHF band RFID system
 - Long range communication
 - Multiple tag reading
 - What deteriorates the reading accuracy?
- Radio Regulations around UHF band RFID system
 - Radio regulations?
 - Japan status

Executive summary

- UHF band RFID features 5-10m reading distance. Primary target is supply chain management.
- Reading accuracy depends on the radio propagation environment as well as tag and reader performance.
- 952-954MHz band will be opened to RFID system in Japan from early FY.2005.

UHF band?

Typical Usages of UHF RFID

High power type

Low power type

Long range, multiple tags reading

Short range, individual tag reading

Class of RFID system

• Active RFID:

carries battery for radio wave transmission

- Passive RFID
 - Passive backscatter: Power is supplied by interrogator in the form of radio wave.
 - Read only
 - Read/Write
 - may carry battery to power the logic circuit in tag (semi-passive).

Basics of UHF passive RFID

Interrogator – Tag communication in a nutshell

Power shall be supplied to tags by interrogator while tags reply.

Power level chart

Fundamental dilemma of passive RFID

- Tag needs to efficiently absorb the radio wave energy from interrogator.
- Tag needs to reflect the radio wave, generating 1 and 0 states, for the reply.

Absorb ? Reflect?

Solutions

Optimal design of tag impedance

Separate antennas for power supply and communications

What is the purpose of UHF RFID?

Accurate and real-time visibility of total supply chain by RFID

Why UHF?

Long range communications requirement

Why UHF? (2)

Path loss

The lower the frequency, the larger the power reception. The lower the frequency, the larger the tags becomes. Good compromise = UHF band; Same story as cellular phone

Other application of UHF RFID system

Automatic participants tracking in Keio University Open Research Forum 2004.

Counting accuracy comparison

Comparison of number of passing participants Counted by using optical gate sensor and RFID reader

Note:

Not all the participants has UHF tag.

Optical sensor sometimes missed counting because of overwrapping of persons and/or bags

Detailed analysis on the reading accuracy

Test case	Person	Ouput level (EIRP)		
		27dBm (33dBm)	23.1dBm(29.1dBm)	18dBm(24dBm)
Case 1	Person 1	100%(20/20)	100%(20/20)	65%(13/20)
	Person 2	100%(20/20)	100%(20/20)	75%(15/20)
	Person 3	100%(20/20)	85%(17/20)	10%(2/20)
Case 2	Person 1		100%(20/20)	
	Person 2		80%(16/20)	
	Person 3		85%(17/20)	

100% reading accuracy for 2W transmission power

Factors affecting the reading accuracy

Exposure time to the sufficient power RF wave in case of a reading of population of tags

Multiple tag reading sequence

A prediction of 60 tags reading time

Time to read 60 tags with 99.9% probability

Certain amount of continuous exposure to sufficient power of RF wave is necessary for multiple tag reading

Practical power level fluctuation

Frequency allocation status for UHF RFID

- Region 1 (Europe and Africa)
 - RFID allocation guideline in Short Range Device band (865-868MHz, 869.4-869.65MHz)
 - ERO 70-03, ETSI technical requirements (EN302208, EN302200)
- Region 2 (North and South America)
 - ISM band allocation 902-928MHz
 - FCC15.247 regulates frequency hopping RFID system technical requirements
- Region 3 (Asia Pacific)
 - No allocation
 - Each administration need to establish local radio regulations for UHF RFID

Global frequency allocation chart

Internationally consistent frequency allocation is impracticable at this moment

Japan frequency allocation

Future plan

Fundamental rule of frequency allocation =Newly allocated radio service (RFID) shall not cause harmful interference to the existing service.

Harmful interference?: Spurious emission

Leaking of RFID power may deteriorate the signal to noise ratio of the existing services.

Harmful interference?: Desensitization

Desired signal of the neighbor services may be suppressed due to the existence of the large RFID power the proximity.

Summary of Japan radio regulation for UHF RFID

- Licensing
 - Fast track license for type certificated RFIDs
- Frequency bandwidth 952MHz ~ 954MHz
- Maximum transmission power 4W (EIRP)

(slated to be issued early in 2005 FY)

Fundamental benefit of new regulation

Present regulation

New regulation

Significant reduction of time and effort to get license

Summary

- UHF band RFID features 5-10m reading distance. Primary target is supply chain management. Diverse application will be developed once the technology is in the market.
- Reading accuracy depends on the radio propagation environment as well as tag and reader performance.
- 952-954MHz band will be opened to RFID system in Japan from early FY.2005.