Convergence in Metro Area Networks

Randall Atkinson

rja@extremenetworks.com

Chief Scientist

Agenda

- What are converged networks ?
- Why is convergence happening ?
- How does this change Metro Area Networks (MANs) ?
- Key technologies enabling MAN convergence
 - Need to have Quality of Service, Resilience, & Scalability
- Deployment considerations

Terminology

- A traditional network only provides best-effort service. It is designed to carry packet data and is not designed specifically for real-time or prioritised data.
- A converged network supports multiple priorities and service qualities. It is designed to carry not only ordinary packet data, but also multimedia traffic, for example IP Telephony, and other real-time traffic.

Why Converge Networks ?

Reduce end-user costs

- Easy to convince users to switch to lower-cost IP-based provider from higher-cost TDM-based provider
- Reduce service-provider costs
 - Eliminates need to build and maintain an expensive TDM network in parallel with the Ethernet/IP network
 - Reduced operations & maintenance costs
- Improve service provider business
 - Additional product/service offerings are possible
 - Delivers more revenue from a single network infrastructure

Ethernet drives Convergence

Ethernet is the dominant link-layer technology today

- Virtually all VoIP handsets use Ethernet
- Virtually all enterprises use Ethernet for their LANs
- Lower cost than traditional TDM technologies
- Recent advances in Ethernet enable convergence
 - 10 Gigabit Ethernet now widely available, 40 GigE coming
 - Lower cost than SONET/SDH, compatible with WDM systems
 - Ring Topologies for resilience (RFC-3619)
 - Ethernet Quality-of-Service (IEEE 802.1p)
 - VLANs (IEEE 802.1q), VMANs, & MPLS for scalability
- Easy to configure, operate, and manage

Results in lower recurring operational expenses

IP Telephony Drives Convergence

- Converged networks permit service providers to broaden their markets
 - Can offer telephone service in addition to packet service
 - Can offer video-conferencing services also
 - Can offer their packet network service for higher rates
 - In future, could also sell IP Television to compete with cable television
- Price bundling can lure customers to obtain more services from a single converged provider

Video Drives Convergence

- IP Video Conferencing increasingly deployed by enterprise users
 - Lower cost than ISDN
 - No Advance Circuit Provisioning is Needed
 - Can use multimedia appliance or leverage existing PCs
- Telecom firms interested in new services
 - Microsoft investing heavily in IP/TV initiative
 - Verizon (USA) deploying trial for IP/TV
- Triple-Play for IP Telephony, IP Video, and IP data
 - Delivered over a single converged network
 - Billed together on a single monthly statement
 - Captures more revenue from existing customers

Customers Drive Convergence

Enterprise customers are converging their networks

- IP Storage is increasingly popular
 - Lower-cost, more resilient, more flexible than older approaches
- Voice-over-IP is increasingly popular within enterprises
 - Initial deployment normally for internal phone calls
 - Can lead to significant cost reductions just for intra-company phone calls
- Internal video-conferencing is moving from ISDN to IP
- Enterprise customers need improved service quality from their service providers
 - Enables the intra-company convergence initially
 - Converged network operators are better able to compete

Business Issues

Business Models: Comparison

- Traditional Packet Data Network
 - Best-effort service only, no QoS mechanisms
 - Pricing based only on the access network speed
 - Tiered-services based only on access network speeds
 - Easily commoditised, hurting profit margins

- Converged Voice/Data Network
 - Service Quality becomes a differentiator
 - Pricing based on access network speed and QoS
 - Broader range of service offerings becomes possible
 - Service Quality protects against commoditisation
 - Better profit margins are possible

Business Models: Enterprise

- Basic Enterprise service
 - Enterprise customer with multiple locations
 - Provides only basic IP service to each location
 - Customer deploys their own VPN service
 - Best-Effort delivery of IP packets
 - No support for carrying customer VLAN tags across the IP network
 - Highly commoditised
 - Competing on price

- Enterprise VPN service
 - Enterprise customer with multiple locations
 - Enterprise customer delivers internal VoIP traffic on a separate link/port/VLAN-ID from their packet data traffic
 - Provides layer-2 VPN service between sites
 - Voice/video traffic gets preferred service quality
 - Not commoditised
 - Competing on services and quality, not price

Business Models: IP Telephony

- Packet telephone services using VoIP
 - Uses IP Telephony end-toend, with VoIP soft-switch and PSTN interconnection provided by service provider
 - QoS markings are added at the provider-edge switch, based on address of the IP telephone handset(s)
 - Enables broader deployment of telephony services
 - Reduces cost of deploying telephony to new customers
 - Reduces cost of capacity within the service provider network

- Traditional telephone services using VoIP
 - Use traditional telephony between PBX/CO and the customer
 - Use IP Telephony between the PBXs and COs internally
 - Reduces cost of capacity within the service provider network
 - Easier to deploy and lower risk, but also less benefit

Business Models: IP/Video

Cable TV companies already offer Triple-Play

- Telephony, Video, and Data on a single monthly bill
- Telephony, Video, and Data over common HFC deployment
- Customers like ability to get all services from one provider
- Traditional Telecom firms
 - Offer Traditional Telephony
 - Offer Data services via DSL
 - Now can offer television, moves, and other video over IP
- Deploying IP/Video Services enables traditional Telecom firms to compete more effectively

Application Issues

Potential Voice/Video Issues

Voice/video quality can be very sensitive to:

- Packet Loss
- Delay (also called Latency)
- Jitter (also called Variation in Delay)
- Traditional data traffic is not very sensitivity to moderate amounts of packet loss, delay, or jitter
- So a Converged Network needs several enhancements to support all kinds of applications.

Voice/Video Encoder Issues

- Many voice encoder (vocoder) algorithms have been standardised
 - Examples: ITU-T G.711, ITU-T G.729, CELP for voice
 - Examples: MPEG3, MPEG4 for video
 - Both ITU-T and IETF have specified vocoder algorithms
- Different algorithms have different properties
 - Many older algorithms were designed for circuit networks and do not work as well in packet networks
 - Example: ITU-T G.729 requires about half the bandwidth of ITU-T G.711 for nearly the same voice quality
 - Different algorithms are more tolerant or less tolerant of jitter, delay or loss.
- Need to use an appropriate algorithm !

Enterprise VPN Issues

- Many enterprises are deploying IP Telephony (VoIP) within the corporate LAN
- Some enterprise applications are more important
 - Example: Database is more important than IM or Email
- Enterprises want higher service quality for their most important VPN traffic
- Enterprises use VLANs across multiple sites
- Service provider implications:
 - Quality, not price, becomes the key differentiator
 - Converged metro networks with Layer-2 VPN service can be an important new offering for enterprise customers

Other Service Quality Issues

Not all data applications are equally important

- Example: Database access is usually much more important than instant messaging to enterprise users
- Example: IP Storage works best with low delay and low packet loss rate
- Example: web browsing is often not very important
- Need to ensure that mission-critical applications receive the best quality of network service.
- Need to be able to protect the service provider network from QoS-centric Denial-of-Service (DoS) attacks.

How does the MAN change?

Traditional MANs have been built upon:

- Best-effort IP service
- Best-effort Ethernet service
- VLANs to separate users
- Fault recovery times from 1 second to several minutes
- Converged MANs also require:
 - IP Quality-of-Service
 - Ethernet Quality-of-Service
 - Virtual MANs or Hierarchical VPLS for Layer-2 VPNs
 - Fault recovery as quickly as ~50ms
 - Enhanced switch/router capabilities

Enabling Technologies for Converged Networks

Metropolitan Area Ethernet

- Key enabling technology for metro convergence
 - Lower cost, compatible with Enterprise LANs, easy to manage
- Key Advances in Ethernet Technology
 - Scalability from 10 Mbps to 10 Gbps, and in future 40 Gbps
 - Ethernet Quality-of-Service (IEEE 802.1p)
 - Protect real-time voice/video traffic
 - VLANs (IEEE 802.1q) & VMANs (802.1q in 802.1q)
 - Ethernet Automatic Protection Switching (RFC-3619)
 - Protection against fibre cuts (approx 50ms recovery time)
 - Jumbo Frames
 - Larger than IEEE standard allows
 - Enables tunnelling and encapsulation without fragmentation

Scalability: Virtual MAN & MPLS

Issues:

- IEEE 802.1q standard only supports 4k VLAN IDs
- Service providers need to support more than 4k customers with a Metro Area Network
- Layer-3 VPNs can not help with this problem
 - Layer-3 VPNs can't carry the layer-2 VLAN IDs end-to-end
 - Two technology approaches are commonly used:
 - Virtual MANs (VMANs)
 - Double VLAN encapsulation -- IEEE 802.1q in IEEE 802.1q
 - MPLS Layer-2 VPNs
 - Hierarchical Virtual Private LAN Service (H-VPLS)

Quality of Service: Design Options

- Over-provisioning Capacity
 - If no congestion, then no problems from delay, jitter, or loss
 - Can be very cost-effective with "dark fibre" deployments
- Ethernet Precedence
 - Originally specified in IEEE 802.1p
 - Provides 3 bits to mark each Ethernet frame
 - IP Type-of-Service, IP Precedence, IP DiffServ
 - 3 different names for essentially the same mechanism
- IETF Integrated Services with RSVP
 - Failed attempt to define QoS for IP networks during 1990s
 - RSVP protocol did not and does not scale sufficiently !

Quality of Service: Mechanisms

- QoS has 2 primary components
 - 1) QoS markings on packets
 - 2) Special packet processing in switches and routers
- Standards for QoS Markings
 - IETF Differentiated Services (DiffServ) from RFC-2475
 - IETF IP Type-of-Service (ToS), from RFC-791
 - IEEE Ethernet Precedence, from IEEE 802.1p
- Packet Processing Algorithm Examples
 - IETF DiffServ AF or EF queuing/forwarding
 - Weighted RED (WRED)
 - Weighted Fair Queing (WFQ)
 - Strict Precedence

IP Differentiated Services

- Most recent definition for the IP ToS byte
 - Backwards-compatible with IP Precedence
 - Defined by RFC-2474 and RFC-2475
- Defines 2 packet processing schemes
 - "Assured Forwarding" (AF), defined by RFC-2597
 - "Expedited Forwarding" (EF), defined by RFC-2598
- QoS Implementation details do matter
 - Works best when QoS is implemented in ASIC hardware, rather than in software on the main CPU

IP Queuing: AF versus EF

Myth:

- AF and EF are always very different from each other
- Reality:
 - When QoS and forwarding are implemented in ASIC hardware, there is little difference between AF and EF.
 - When QoS or forwarding are implemented in software on a CPU, there can be big differences between AF and EF

IP Queuing: only AF xor EF

Myth:

- There are only 2 possible configurations on a given queue
- One can choose either AF xor EF packet handling
- Reality:
 - Better quality implementations have many configuration options, so AF and EF terminology is too restrictive.
 - Examples of other possible configuration parameters:
 - Minimum/Maximum bandwidth allocations to a flow or queue
 - Minimum/Maximum bandwidth allocations to a port or VLAN
 - Tuning parameters for WFQ or WRED
 - Clipping vs Rate-Limiting vs Rate-Shaping
 - Precedence

IP Queuing: VoIP Myth

Myth:

- VoIP requires EF packet processing; AF just won't work
- Reality:
 - VoIP requires thoughtful queuing
 - Either AF or EF can work well or work badly depending on the details of the implementation and configuration
 - Hardware-based QoS works best for any queuing algorithm
 - Other deployment details (Resiliency, Scalability, Capacity) remain very important

Quality of Service Model

- Each deployment needs to define a QoS Model
 - Defines how various kinds of traffic are categorised
 - Defines how each category is handled by switches/routers
- Highest Priority group is always "network control"
 - Essential traffic to keep the network up and running
 - Includes Bridging, IP Routing, SNMP, etc.
- Multimedia group higher than other applications
 - Includes SIP, MGCP, RTP, etc.
 - Signalling is higher priority than media packets
- Fine-grained QoS models work better
 - Best to have 8 or more hardware queues per port
 - Best to have flexible configuration options

Deployment Considerations

Resiliency: Ethernet Rings

- Why do we want rings ?
 - Often matches the actual deployed fibre topology
 - Rings can recover very quickly from fibre cuts
 - Positive experience with FDDI and SONET rings
- Normally, Ethernet cannot have a ring topology
 - Spanning Tree algorithm requires tree/branch topology
 - Loops in the topology prevent proper bridge convergence
- Ethernet Automatic Protection Switching (RFC-3619)
 - Enables Ethernet Ring network deployments
 - Works with standard Spanning Tree algorithms/protocols
 - Works with equipment from multiple vendors on the ring
 - Fast recovery from fibre cut: ~50ms

IP Telephony

- IP Telephony services benefit from special treatment
- Separate telephony from ordinary traffic using VLANs
- Ensure appropriate service quality
 - Mark telephony signalling & voice packets at the edge
 - Apply QoS queuing in the core, with ASIC-based QoS
 - Reserve bandwidth for telephony traffic in edge and core
 - Monitor port utilisation and link utilisation
- Ensure high availability for IP Telephony servers
 - SIP or H.323 servers need to be available 24x7x365
 - Use multi-homed servers and redundant servers
- Use non-blocking switches and routers

Operational Security

- Harden the network infrastructure
 - Eliminate clear-text passwords using Secure Shell (SSHv2)
 - Centralise/automate password management
 - Diameter, RADIUS, TACACS+, LDAP, and/or Kerberos
 - Use SNMPv3 with cryptography
 - SNMPv1 and SNMPv2c lack cryptographic security
- Enable thoughtful logging and auditing
 - Use automated tools to analyse logs and audit records
- Monitor traffic patterns and utilisation
 - Essential to detect and prevent attacks, abuse, and fraud
 - Alarm when specified thresholds are reached
- Emerging Stds: IETF OpSec WG

Configuration Management

- Scalability requires automation
 - "People are expensive, automation is cheap" M. Medin
- Accuracy requires automation
 - Computers good at repeating the same task precisely
 - People make mistakes
- Typical Approach to Automation
 - Create and maintain network configuration database
 - Create and use automated tools to ensure actual equipment configuration matches the configuration database and report any differences between actual and expected configs
- Emerging Stds: IETF Network Configuration WG

Summary

What drives convergence ?

Key Enabling technologies

- Metro Area Ethernet
- IP Telephony
- Customer demand
 - both from enterprise users & from residential users
- Business Concerns
 - Lower cost of deploying network, compared with TDM
 - Lower cost of operating network, compared with TDM
 - Additional revenue
 - Better profit margins
 - Better competitive position

Recommended Approach

- Select an appropriate business model
- Apply Converged Network design principles
 - High Service Quality
 - Resilience
 - Scalability
 - Availability
- Select equipment carefully
- Deploy thoughtfully after lab testing and trial(s)
- Minimise Total Cost of Ownership (TCO)
- Maximise revenue opportunities

Thank You

